Syntaxin-1A is excluded from recycling synaptic vesicles at nerve terminals.
نویسندگان
چکیده
At presynaptic terminals, intermixing during cycles of exocytosis and endocytosis challenges the molecular identity of the plasma and synaptic vesicle membranes. Although synaptic vesicle components are retrieved during recycling, the extent to which plasma membrane proteins enter the synaptic vesicle recycling pathway has not been examined. The target-SNARE (N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin-1 was shown previously to be present on putative synaptic vesicular membranes (Koh et al., 1993; Walch-Solimena et al., 1995; Kretzschmar et al., 1996), suggesting that syntaxin may cycle between the synaptic vesicle pool and the cell surface (Walch-Solimena et al., 1995). This implies that the molecular identity of the two membranes is not maintained during synaptic activity. Because the main role of syntaxin-1 is as a target-SNARE for vesicle fusion, appearance on synaptic vesicles could lead to futile interactions with vesicle-SNARE proteins. We investigated whether the subcellular localization of syntaxin-1A, tagged with the pH-sensitive fluorescent tag pHluorin, is regulated during neurotransmission using laser-scanning microscopy. We report here that syntaxin-1A is predominantly localized to the plasma membrane, with a small proportion present in an intracellular compartment with a lumenal pH consistent with synaptic vesicles. However, the internal fraction of syntaxin-1A is excluded from synaptic vesicles that undergo action potential-dependent recycling. These data indicate that the molecular identity of opposing exocytotic membranes is preserved by the sorting of syntaxin-1A from recycling synaptic vesicles.
منابع مشابه
Syntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations
Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...
متن کاملSyntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations
Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...
متن کاملA Membrane-Fusion Model That Exploits a β-to-α Transition in the Hydrophobic Domains of Syntaxin 1A and Synaptobrevin 2
Parallel zippering of the SNARE domains of syntaxin 1A/B, SNAP-25, and VAMP/synaptobrevin 2 is widely regarded as supplying the driving force for exocytotic events at nerve terminals and elsewhere. However, in spite of intensive research, no consensus has been reached concerning the molecular mechanism by which these SNARE proteins catalyze membrane fusion. As an alternative to SNARE-based mode...
متن کاملLocalization of synaptotagmin-binding domains on syntaxin.
Synaptotagmin, an abundant calcium- and phospholipid-binding protein of synaptic vesicles, has been proposed to regulate neurotransmitter release at the nerve terminal. To understand better the biochemical mechanism of neurotransmitter release, we have investigated the calcium-dependent and -independent protein-protein interactions between synaptotagmin I and syntaxin 1a, a subunit of the recep...
متن کاملRetrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes)
The morphological features of pinched-off presynaptic nerve terminals (synaptosomes) from rat brain were examined with electron microscope techniques; in many experiments, an extracellular marked (horseradish peroxidase or colloidal thorium dioxide) was included in the incubation media. When incubated in physiological saline, most terminals appeared approximately spherical, and were filled with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 20 شماره
صفحات -
تاریخ انتشار 2004